Operación y despliegue
Deploy automático
1. Merge a main.
1. GitHub Actions ejecuta:
· make lint
· make test
· alembic upgrade --sql check para migraciones pendientes.
1. SSH al VPS (VPS_HOST, VPS_USER, VPS_KEY).
1. git pull, make migrate, make seed_min.
1. sudo systemctl restart illanes00-ep (hasta migrar al unit templado illanes00-ep@production).
1. Smoke tests (/healthz, /api/0.6.9/health, /api/0.6.9/hello).
Comandos locales
· make dev: corre Uvicorn con autoreload.
· make seed_min: carga dimensiones básicas.
· make smoke: prueba endpoints (/healthz, /api/<ver>/health, /api/<ver>/hello).
· Pipeline ENUSC
· ENUSC_YEARS=2022,2023 ENUSC_LOAD_DB=0 PYTHONPATH=. python -c "from etl.pipelines.enusc.pipeline import ingest_enusc; ingest_enusc()"
· Variables clave:
· ENUSC_LOAD_DB: 1 para escribir en Postgres (requiere credenciales configuradas); 0 deja solo parquet/CSV.
· ENUSC_DB_APPEND_ONLY: fuerza modo append en tablas bronze/silver/gold.
· ENUSC_ONLY_MODULES, ENUSC_SKIP_MODULES: controlan la exportación bronze vs. modulares.
· Artefactos se depositan en data/bronze/enusc/, data/silver/enusc/, data/gold/enusc/ y reportes data/silver/enusc/reportes/ (manifest de módulos, resumen personas/hogares).
· CLI auxiliar:
· python -m etl.pipelines.enusc.cli ingest --years 2022 2023 (interpreta flags y exporta usando las clases nuevas).
· python -m etl.pipelines.enusc.cli preview-columns --limit 1 entrega conteo de columnas por módulo sin ejecutar el pipeline completo.
· python -m etl.pipelines.enusc.cli compare-manifests data/silver/enusc/reportes/modulos_manifest.json backups/enusc/modulos_manifest.json avisa de módulos/archivos añadidos o faltantes entre corridas.
Backups
· Ejecutar scripts/backup_environment.py para cada entorno:
· .venv/bin/python scripts/backup_environment.py --env production
.venv/bin/python scripts/backup_environment.py --env development
.venv/bin/python scripts/backup_environment.py --env test
· Los artefactos se guardan en backups/<entorno>/<timestamp>/ (ej. producción: backups/production/20251020-180032/).
· Cada carpeta contiene database.dump (formato pg_dump -F c), metadata.tar.gz con config/, data/meta/, data/schema/, docs/ y una copia del .env.
· Programar un cron o systemd timer pendiente para automatizar la ejecución diaria y sincronizar los dumps a almacenamiento externo.
· Para test primero crear el rol y la base desde postgres:
· sudo -u postgres createuser -P ep_app_test
sudo -u postgres createdb epdatos_test -O ep_app_test
· [bookmark: servicios-por-entorno]Servicios por entorno
· Desarrollo (APP_PORT=8211): systemctl --user restart illanes00-ep@development
· Test (APP_PORT=8210): systemctl --user restart illanes00-ep@test
· Habilitar arranque automático: systemctl --user enable illanes00-ep@development, systemctl --user enable illanes00-ep@test
· Asegura loginctl enable-linger illanes00 para que las unidades de usuario persistan tras logout.
· Producción seguirá en sudo systemctl restart illanes00-ep hasta migrar a illanes00-ep@production.
Logs
· Producción (legacy): sudo journalctl -u illanes00-ep -n 200 --no-pager
· Nuevas unidades de usuario: journalctl --user -u illanes00-ep@development -n 200, journalctl --user -u illanes00-ep@test -n 200
Observabilidad
· Sentry se inicializa automáticamente cuando SENTRY_DSN está definido en .env.
· El backend reporta errores y tiempos vía SentryAsgiMiddleware; el entorno se etiqueta con ENVIRONMENT y la versión con VERSION + commit.
· Ajusta SENTRY_TRACES_SAMPLE_RATE / SENTRY_PROFILES_SAMPLE_RATE para habilitar trazas y perfiles (0.0 por defecto).
· Recomiendo crear reglas de alerta (correo/Slack) directamente en Sentry para caídas frecuentes o spikes de 5xx.
Roles y permisos
· Usuario illanes00 posee sudo con NOPASSWD para systemctl status|restart illanes00-ep.
· Base de datos epdatos pertenece al rol illanes00-ep.
