
Procesos ETL

Table of contents

1 Capas de datos 1

2 Pipelines 1
2.1 Arquitectura modular . 1

3 Pruebas de datos 2

4 Semillas mínimas 2

5 Pipelines disponibles 2

6 Series BCCh para deflactores / ratios 4

1 Capas de datos

• data/raw/: fuentes originales (CSV, XLSX, JSON, API dumps).
• data/bronze/: normalización mínima, tipos corregidos.
• data/silver/: tablas integradas con referencias (data/ref/).
• data/gold/: modelos listos para consumo analítico / API.
• data/meta/: diccionarios, linaje, contratapas, definiciones.
• data/ref/: catálogos maestros (dimensiones, dominios).

2 Pipelines

Los pipelines viven en etl/pipelines/<tema>/<dominio>/. Cada pipeline expone:

2.1 Arquitectura modular

• Cada paquete sigue la convención extract.py, transform.py, load.py (o submódulos equiv-
alentes) más settings.py y pipeline.py como orquestador.

• Las dependencias compartidas residen en etl/metadata/, etl/metadata_store.py y
etl/core/ (abstracciones de Pipeline, Task, Dataset).

1

• Los pipelines mantienen archivos �400 líneas; helpers extensos se ubican en submódulos dedi-
cados.

• Las pruebas viven en tests/unit/ (parsers, procesadores) y tests/data/ (integración con
fixtures sintéticas).

from etl.pipelines.base import Pipeline

class EncuestaEnuscBronze(Pipeline):
source = "data/raw/enusc/*.csv"
target_table = "bronze.enusc_respuestas"

def extract(self):
...

def transform(self, df):
...

def load(self, df):
...

3 Pruebas de datos

• tests/unit/ contiene suites específicas para loaders/procesadores (por ejemplo tests/unit/test_gendarmeria_loader.py
y tests/unit/fiscalia_persecucion_penal/*).

• tests/data/ agrupa pruebas de integración que ejecutan pipelines sobre fixtures empaque-
tadas (tests/data/test_dipres_bronze_pipeline.py, tests/data/test_ine_estadisticas_judiciales_pipeline.py,
etc.).

• data/tests/ (pendiente) recogerá validaciones de integridad y constraints SQL directamente
sobre la base de datos.

4 Semillas mínimas

etl/seeds/minimum.py crea dimensiones base (ej. dim_fecha, dim_region). Se ejecuta automáti-
camente en cada make seed_min.

5 Pipelines disponibles

• etl.pipelines.dipres_budget.DipresBudgetBronze: normaliza los binarios DIPRES
seleccionando el formato preferente (CSV > XLS/XLSX > XML/HTML) y gen-
era los CSV de la capa bronze (data/bronze/dipres_presupuestos_totales.csv y
data/bronze/dipres_presupuestos_nodos.csv).

– Convierte automáticamente los PDF en texto (*.md) para referencia documental.

2

– Reconoce archivos .xls que en realidad son HTML exportado desde DIPRES y los
procesa con pandas.read_html.

– Multiplica los montos publicados en miles por 1000, aplica el tipo de cambio promedio
anual (data/ref/dipres_exchange_rates.csv) y normaliza los trimestres acumulados
(primer/segundo/tercer/cuarto) a los meses equivalentes (marzo, junio, septiembre,
diciembre).

– Descarta la Partida 50 (Tesoro Público) para evitar doble conteo en los agregados na-
cionales.

– Construye y persiste el glosario data/meta/diccionarios/dipres_programas.csv
para enriquecer los nombres de partidas/capítulos/programas en todas las corridas.

– Genera el puente COFOG (data/meta/diccionarios/dipres_cofog_programas.csv)
a partir del Anexo 4 para habilitar agregaciones funcionales.

– Registra archivos que no pudieron normalizarse (lista skipped en la ejecución del
pipeline) y los deja etiquetados en el manifest.

– Alimenta la API /api/{version}/datasets/{slug}/raw-assets, por lo que cada cor-
rida deja disponibles los binarios con permalink descargable.

– Registra la ejecución en jobs_runs y actualiza meta_datasets/meta_files/meta_tables/meta_lineage
mediante etl.metadata_store.MetadataStore (ver tests/data/test_metadata_instrumentation.py).

– El script de carga scripts/load_dipres_bronze_to_db.py detecta los últimos
periodos presentes en Postgres, inserta únicamente los meses nuevos en jerarquía y
presupuesto_ejecuciones_mensual, y anota la corrida en etl_log con el periodo
cubierto y su variant.

• scripts/build_cofog_series.py: agrega los nodos de nivel programa por fun-
ción/subfunción COFOG, aplica deflactores IPC base 2018, suma totales de presupuesto
y PIB real, y persiste las series anuales con montos nominales/reales y participaciones en
data/analytics/cofog_*_annual.csv.

• etl.pipelines.ine_estadisticas_judiciales.IneEstadisticasJudicialesPipeline:
recorre el manifest de INE estadísticas judiciales, procesa las 41 hojas (anuales y semestrales),
genera archivos tidy por cuadro en data/bronze/ine_estadisticas_judiciales/, consol-
ida los registros en data/silver/ine_estadisticas_judiciales/records.parquet, deriva
automáticamente el segundo semestre, emulsiona chequeos de QA (totales, duplicados, valores
negativos) y publica agregados en data/gold/ine_estadisticas_judiciales/aggregated.parquet.

• etl.pipelines.enusc.ingest_enusc: pipeline modular de ENUSC que:

– Resume todo el procesamiento anual (lectura .sav, identificación de columnas,
QA interanual) y delega la exportación en las clases PersonHouseholdExporter y
ModuleExporter.

– PersonHouseholdExporter construye enusc_{year}_personas.parquet, enusc_{year}_hogares.parquet,
devuelve household_db listo para cargar a bronze y recopila estadísticas (hogares_registrados,
columnas retenidas).

– ModuleExporter genera los parquet por módulo (data/silver/enusc/modulos/<modulo>/<modulo>_{year}.parquet),
limpia salidas anteriores si no se ejecuta en modo append y acumula métricas en
ModuleSummary.

– Las clases anteriores escriben en DB a través de TableWriter, por lo que el modo
ENUSC_DB_APPEND_ONLY=1 se respeta de manera consistente.

– Se ejecutan validaciones ligeras con Pydantic antes de escribir enusc_personas,
enusc_hogares y el resumen, permitiendo modo no estricto (descarta filas inválidas) o
estrictamente (SchemaValidator(strict=True)).

3

– El pipeline produce además data/silver/enusc/reportes/enusc_personas_hogares_resumen.csv,
data/silver/enusc/reportes/modulos_manifest.json, indicadores regionales/nacionales
(data/gold/enusc/*.csv) y el parquet interanual 2008-2024.

• etl.pipelines.gendarmeria_reportes.GendarmeriaReportLoader: orquesta los subsis-
temas Abierto, Cerrado y Postpenitenciario a través de process_abierto, process_cerrado
y process_postpenitenciario; persiste CSV normalizados (gendarmeria_abierto.csv,
gendarmeria_cerrado_poblacion.csv, gendarmeria_postpenitenciario.csv) y registra
mediciones via mapas declarativos.

• etl.pipelines.seguridad_fuentes.BronzeSeguridadFuentes: integra estadísti-
cas de DIPRES, Fiscalía, Gendarmería e INE reutilizando adaptadores por fuente
(etl/pipelines/seguridad_fuentes/*.py) y utilidades territoriales comunes.

6 Series BCCh para deflactores / ratios

• Script: scripts/fetch_bcch_series.py

– Consume el servicio SOAP SieteWS (GetSeries) con credenciales BCCH_USER /
BCCH_PASS (definidas en .env).

– Descarga dos series públicas:
∗ G073.IPC.IND.2018.M: IPC general histórico (base 2018=100) → data/ref/bcch/ipc_mensual.csv.
∗ F032.PIB.FLU.R.CLP.EP18.Z.Z.0.T: PIB real trimestral encadenado, base

2018=100 (CLP de 2018) → data/ref/bcch/pib_trimestral_real_2018.csv.
– Actualiza el catálogo data/meta/catalog/ref_bcch.yaml para documentar origen, es-

quema y términos de uso.

Ejecución manual:

BCCH_USER=... BCCH_PASS=... PYTHONPATH=. python scripts/fetch_bcch_series.py

Los CSV resultantes sirven como referencia para deflactar montos nominales y calcular porcentajes
respecto del PIB en la capa analítica o dashboards.

4

	Capas de datos
	Pipelines
	Arquitectura modular

	Pruebas de datos
	Semillas mínimas
	Pipelines disponibles
	Series BCCh para deflactores / ratios

