Procesos ETL
Capas de datos
· data/raw/: fuentes originales (CSV, XLSX, JSON, API dumps).
· data/bronze/: normalización mínima, tipos corregidos.
· data/silver/: tablas integradas con referencias (data/ref/).
· data/gold/: modelos listos para consumo analítico / API.
· data/meta/: diccionarios, linaje, contratapas, definiciones.
· data/ref/: catálogos maestros (dimensiones, dominios).
Pipelines
Los pipelines viven en etl/pipelines/<tema>/<dominio>/. Cada pipeline expone:
Arquitectura modular
· Cada paquete sigue la convención extract.py, transform.py, load.py (o submódulos equivalentes) más settings.py y pipeline.py como orquestador.
· Las dependencias compartidas residen en etl/metadata/, etl/metadata_store.py y etl/core/ (abstracciones de Pipeline, Task, Dataset).
· Los pipelines mantienen archivos ≤400 líneas; helpers extensos se ubican en submódulos dedicados.
· Las pruebas viven en tests/unit/ (parsers, procesadores) y tests/data/ (integración con fixtures sintéticas).
from etl.pipelines.base import Pipeline

class EncuestaEnuscBronze(Pipeline):
 source = "data/raw/enusc/*.csv"
 target_table = "bronze.enusc_respuestas"

 def extract(self):
 ...

 def transform(self, df):
 ...

 def load(self, df):
 ...
Pruebas de datos
· tests/unit/ contiene suites específicas para loaders/procesadores (por ejemplo tests/unit/test_gendarmeria_loader.py y tests/unit/fiscalia_persecucion_penal/*).
· tests/data/ agrupa pruebas de integración que ejecutan pipelines sobre fixtures empaquetadas (tests/data/test_dipres_bronze_pipeline.py, tests/data/test_ine_estadisticas_judiciales_pipeline.py, etc.).
· data/tests/ (pendiente) recogerá validaciones de integridad y constraints SQL directamente sobre la base de datos.
Semillas mínimas
etl/seeds/minimum.py crea dimensiones base (ej. dim_fecha, dim_region). Se ejecuta automáticamente en cada make seed_min.
Pipelines disponibles
· etl.pipelines.dipres_budget.DipresBudgetBronze: normaliza los binarios DIPRES seleccionando el formato preferente (CSV > XLS/XLSX > XML/HTML) y genera los CSV de la capa bronze (data/bronze/dipres_presupuestos_totales.csv y data/bronze/dipres_presupuestos_nodos.csv).
· Convierte automáticamente los PDF en texto (*.md) para referencia documental.
· Reconoce archivos .xls que en realidad son HTML exportado desde DIPRES y los procesa con pandas.read_html.
· Multiplica los montos publicados en miles por 1000, aplica el tipo de cambio promedio anual (data/ref/dipres_exchange_rates.csv) y normaliza los trimestres acumulados (primer/segundo/tercer/cuarto) a los meses equivalentes (marzo, junio, septiembre, diciembre).
· Descarta la Partida 50 (Tesoro Público) para evitar doble conteo en los agregados nacionales.
· Construye y persiste el glosario data/meta/diccionarios/dipres_programas.csv para enriquecer los nombres de partidas/capítulos/programas en todas las corridas.
· Genera el puente COFOG (data/meta/diccionarios/dipres_cofog_programas.csv) a partir del Anexo 4 para habilitar agregaciones funcionales.
· Registra archivos que no pudieron normalizarse (lista skipped en la ejecución del pipeline) y los deja etiquetados en el manifest.
· Alimenta la API /api/{version}/datasets/{slug}/raw-assets, por lo que cada corrida deja disponibles los binarios con permalink descargable.
· Registra la ejecución en jobs_runs y actualiza meta_datasets/meta_files/meta_tables/meta_lineage mediante etl.metadata_store.MetadataStore (ver tests/data/test_metadata_instrumentation.py).
· El script de carga scripts/load_dipres_bronze_to_db.py detecta los últimos periodos presentes en Postgres, inserta únicamente los meses nuevos en jerarquía y presupuesto_ejecuciones_mensual, y anota la corrida en etl_log con el periodo cubierto y su variant.
· scripts/build_cofog_series.py: agrega los nodos de nivel programa por función/subfunción COFOG, aplica deflactores IPC base 2018, suma totales de presupuesto y PIB real, y persiste las series anuales con montos nominales/reales y participaciones en data/analytics/cofog_*_annual.csv.
· etl.pipelines.ine_estadisticas_judiciales.IneEstadisticasJudicialesPipeline: recorre el manifest de INE estadísticas judiciales, procesa las 41 hojas (anuales y semestrales), genera archivos tidy por cuadro en data/bronze/ine_estadisticas_judiciales/, consolida los registros en data/silver/ine_estadisticas_judiciales/records.parquet, deriva automáticamente el segundo semestre, emulsiona chequeos de QA (totales, duplicados, valores negativos) y publica agregados en data/gold/ine_estadisticas_judiciales/aggregated.parquet.
· etl.pipelines.enusc.ingest_enusc: pipeline modular de ENUSC que:
· Resume todo el procesamiento anual (lectura .sav, identificación de columnas, QA interanual) y delega la exportación en las clases PersonHouseholdExporter y ModuleExporter.
· PersonHouseholdExporter construye enusc_{year}_personas.parquet, enusc_{year}_hogares.parquet, devuelve household_db listo para cargar a bronze y recopila estadísticas (hogares_registrados, columnas retenidas).
· ModuleExporter genera los parquet por módulo (data/silver/enusc/modulos/<modulo>/<modulo>_{year}.parquet), limpia salidas anteriores si no se ejecuta en modo append y acumula métricas en ModuleSummary.
· Las clases anteriores escriben en DB a través de TableWriter, por lo que el modo ENUSC_DB_APPEND_ONLY=1 se respeta de manera consistente.
· Se ejecutan validaciones ligeras con Pydantic antes de escribir enusc_personas, enusc_hogares y el resumen, permitiendo modo no estricto (descarta filas inválidas) o estrictamente (SchemaValidator(strict=True)).
· El pipeline produce además data/silver/enusc/reportes/enusc_personas_hogares_resumen.csv, data/silver/enusc/reportes/modulos_manifest.json, indicadores regionales/nacionales (data/gold/enusc/*.csv) y el parquet interanual 2008-2024.
· etl.pipelines.gendarmeria_reportes.GendarmeriaReportLoader: orquesta los subsistemas Abierto, Cerrado y Postpenitenciario a través de process_abierto, process_cerrado y process_postpenitenciario; persiste CSV normalizados (gendarmeria_abierto.csv, gendarmeria_cerrado_poblacion.csv, gendarmeria_postpenitenciario.csv) y registra mediciones via mapas declarativos.
· etl.pipelines.seguridad_fuentes.BronzeSeguridadFuentes: integra estadísticas de DIPRES, Fiscalía, Gendarmería e INE reutilizando adaptadores por fuente (etl/pipelines/seguridad_fuentes/*.py) y utilidades territoriales comunes.
Series BCCh para deflactores / ratios
· Script: scripts/fetch_bcch_series.py
· Consume el servicio SOAP SieteWS (GetSeries) con credenciales BCCH_USER / BCCH_PASS (definidas en .env).
· Descarga dos series públicas:
· G073.IPC.IND.2018.M: IPC general histórico (base 2018=100) → data/ref/bcch/ipc_mensual.csv.
· F032.PIB.FLU.R.CLP.EP18.Z.Z.0.T: PIB real trimestral encadenado, base 2018=100 (CLP de 2018) → data/ref/bcch/pib_trimestral_real_2018.csv.
· Actualiza el catálogo data/meta/catalog/ref_bcch.yaml para documentar origen, esquema y términos de uso.
Ejecución manual:
BCCH_USER=... BCCH_PASS=... PYTHONPATH=. python scripts/fetch_bcch_series.py
Los CSV resultantes sirven como referencia para deflactar montos nominales y calcular porcentajes respecto del PIB en la capa analítica o dashboards.
