
Data Workbench

Table of contents

1 Objetivos 1

2 Roadmap 1

3 TODO inmediato (iteramos con este PR) 2
3.1 Checklist en curso (seguir en orden) . 2

4 Backlog 2

1 Objetivos

• Unificar ingesta RAW → bronze → silver con reglas declarativas (YAML) reutilizables.
• Permitir subir insumos (Excel/CSV) desde la web, previsualizar el tidy resultante y correr

QA.
• Mantener metadatos en Postgres (datasets, runs, lineage) y exponerlos vía API/UI.
• Usar Redis como cache/cola ligera para previsualizaciones y locks de jobs.
• Integrar validaciones con Great Expectations y exponer reportes accionables.

2 Roadmap

Hito Resultado Métricas de éxito
Fase 1 – Fundaciones Esquema SQL (datasets, runs,

lineage), config Redis, specs
YAML + loader pydantic,
endpoints base /workbench.

API responde en <300ms a
GET /workbench/datasets,
seeds sincronizados con specs.

Fase 2 – Preview
interactivo

Upload multi-part + parse +
sample rows + validaciones
GX básicas, UI en Quarto con
lista de datasets y tabla de
resultados.

Preview < 5s para archivos <5
MB, registros en Postgres +
cache Redis.

1

Hito Resultado Métricas de éxito
Fase 3 – Operación guiada Historias de runs, backfills

parametrizables, lineage
graficado y publicación
automática de Data Docs.

QA obligatoria con alertas si
falla, enlaces a Data Docs por
run.

Fase 4 – Automatización Integración con pipelines
(Prefect/RQ), scheduling y
publicación de gold tables.

KPI: 100% pipelines críticos
automatizados en Workbench.

3 TODO inmediato (iteramos con este PR)

⊠ Añadir dependencia redis y great-expectations en requirements/base.txt con versiones
fijas.

⊠ Crear paquete data_workbench/ (spec loader, parser, validation, cache helper).
⊠ Registrar specs iniciales (dipres_ejecucion) y exponerlas vía API /workbench/datasets.
⊠ Nueva migración Alembic para tablas data_workbench_datasets y data_workbench_runs

(JSON + timestamps).
⊠ Endpoints FastAPI (POST /workbench/preview, GET /workbench/runs/{id}, GET

/workbench/lineage/{slug}).
⊠ UI Quarto frontend/pages/workbench/index.qmd con formulario upload + vistas de QA y

lineage.
⊠ Documentar flujo en docs/data-workbench.md (este archivo) y enlazar en sidebar.

3.1 Checklist en curso (seguir en orden)

1. � Mostrar preview RAW + timeline de transformaciones dentro del Workbench.
2. � Enriquecer metadatos y lineage (nodos/edges) y exponerlos en la UI.
3. � Exponer historial de runs persistente (Redis + Postgres) y permitir cargar runs previos

desde la UI.
4. � Publicar hub de herramientas (Workbench, API Docs, pgAdmin, GE Data Docs, visores)

en /herramientas/.
5. � Redis como bus intermediario (stream/evento) para difundir runs y coordinar otros servicios.

4 Backlog

• Sincronizar specs YAML � tabla data_workbench_datasets (upsert automático al levantar
la app).

• Persistir lineage expandido (nodos/edges) para grafo interactivo y exponerlo como JSON-LD.
• Integrar rq worker + Redis para jobs async (backfills, cargas completas) con locks per

dataset.
• Publicar reportes de Great Expectations (Data Docs) estáticos y enlazarlos desde la UI.
• Añadir editor visual de reglas (definir melt, map_categories, type_cast) con previsual-

ización incremental.

2

• Integrar dbt exposures y openlineage para construir grafo completo RAW→GOLD.
• Automatizar pruebas específicas (pytest) por spec usando fixtures en tests/data/workbench/.
• Security hardening: auth en /workbench (Basic/Access), rate-limit uploads y sanitizar meta-

data.

3

	Objetivos
	Roadmap
	TODO inmediato (iteramos con este PR)
	Checklist en curso (seguir en orden)

	Backlog

