Data Workbench
Objetivos
· Unificar ingesta RAW → bronze → silver con reglas declarativas (YAML) reutilizables.
· Permitir subir insumos (Excel/CSV) desde la web, previsualizar el tidy resultante y correr QA.
· Mantener metadatos en Postgres (datasets, runs, lineage) y exponerlos vía API/UI.
· Usar Redis como cache/cola ligera para previsualizaciones y locks de jobs.
· Integrar validaciones con Great Expectations y exponer reportes accionables.
Roadmap
	Hito
	Resultado
	Métricas de éxito

	Fase 1 – Fundaciones
	Esquema SQL (datasets, runs, lineage), config Redis, specs YAML + loader pydantic, endpoints base /workbench.
	API responde en <300ms a GET /workbench/datasets, seeds sincronizados con specs.

	Fase 2 – Preview interactivo
	Upload multi-part + parse + sample rows + validaciones GX básicas, UI en Quarto con lista de datasets y tabla de resultados.
	Preview < 5s para archivos <5 MB, registros en Postgres + cache Redis.

	Fase 3 – Operación guiada
	Historias de runs, backfills parametrizables, lineage graficado y publicación automática de Data Docs.
	QA obligatoria con alertas si falla, enlaces a Data Docs por run.

	Fase 4 – Automatización
	Integración con pipelines (Prefect/RQ), scheduling y publicación de gold tables.
	KPI: 100% pipelines críticos automatizados en Workbench.


TODO inmediato (iteramos con este PR)
· Añadir dependencia redis y great-expectations en requirements/base.txt con versiones fijas.
· Crear paquete data_workbench/ (spec loader, parser, validation, cache helper).
· Registrar specs iniciales (dipres_ejecucion) y exponerlas vía API /workbench/datasets.
· Nueva migración Alembic para tablas data_workbench_datasets y data_workbench_runs (JSON + timestamps).
· Endpoints FastAPI (POST /workbench/preview, GET /workbench/runs/{id}, GET /workbench/lineage/{slug}).
· UI Quarto frontend/pages/workbench/index.qmd con formulario upload + vistas de QA y lineage.
· Documentar flujo en docs/data-workbench.md (este archivo) y enlazar en sidebar.
Checklist en curso (seguir en orden)
1. ☒ Mostrar preview RAW + timeline de transformaciones dentro del Workbench.
1. ☒ Enriquecer metadatos y lineage (nodos/edges) y exponerlos en la UI.
1. ☒ Exponer historial de runs persistente (Redis + Postgres) y permitir cargar runs previos desde la UI.
1. ☒ Publicar hub de herramientas (Workbench, API Docs, pgAdmin, GE Data Docs, visores) en /herramientas/.
1. ☒ Redis como bus intermediario (stream/evento) para difundir runs y coordinar otros servicios.
Backlog
· Sincronizar specs YAML ↔ tabla data_workbench_datasets (upsert automático al levantar la app).
· Persistir lineage expandido (nodos/edges) para grafo interactivo y exponerlo como JSON-LD.
· Integrar rq worker + Redis para jobs async (backfills, cargas completas) con locks per dataset.
· Publicar reportes de Great Expectations (Data Docs) estáticos y enlazarlos desde la UI.
· Añadir editor visual de reglas (definir melt, map_categories, type_cast) con previsualización incremental.
· Integrar dbt exposures y openlineage para construir grafo completo RAW→GOLD.
· Automatizar pruebas específicas (pytest) por spec usando fixtures en tests/data/workbench/.
· Security hardening: auth en /workbench (Basic/Access), rate-limit uploads y sanitizar metadata.
