Monitoreo de la API

Table of contents

1 Métricas en memoria 1
2 Publicador en segundo plano 2

2.1 Flujoresumido e 2

2.2 Configuracidén oL 2
3 Cache de respuestas 2
4 Logs y auditoria 2
5 Cobertura DIPRES (status page) 3
6 Proximos pasos sugeridos 3

1 Métricas en memoria

El middleware metrics_middleware (ver api/main.py) registra:

e Conteo de codigos HTTP.

o Ultimas 50 solicitudes (path, método, timestamp, bytes enviados).

o Metadatos del ultimo payload (payload_meta).

o Versién semver + commit (meta.version, meta.git_commit) cuando se consulta /status.

Se expone via GET /api/0.6.9/status.

{
"status_codes": {"200": 42, "404": 3},
"recent_requests": [
{"path": "/api/0.6.9/datasets", "status_code": 200, ...}
1,
"last_payload": {"collection": "datasets", "resource": "dim_region", "returned": 25, "timest
+

2 Publicador en segundo plano

e api.metrics.storage.APIMetrics mantiene la ventana de peticiones recientes y los conta-
dores agregados. El middleware registra cada request con metrics.record(...).

e api.metrics.publisher.MetricsPublisher toma esos snapshotsy, cada interval_seconds,
invoca publish_once para persistir los percentiles, RPS y tasa de error en monitor_api_metrics.

e start_metrics_publisher(engine, interval_seconds=60, window_seconds=300,
max_retries=3, retry_backoff=1.0) inicializa un hilo daemon. Los tiempos de espera
entre reintentos siguen el patrén retry_backoff * intento.

o Ante errores de base de datos (SQLAlchemyError) se reintenta hasta max_retries veces y se
registra un warning; si se agotan los intentos, se continiia el ciclo sin interrumpir la API.

o El método publish_once puede usarse en tareas programadas (cron) para correr el mismo
flujo en ejecucién sincrona.

2.1 Flujo resumido

1. Middleware — APIMetrics.record: acumula datos crudos.

2. Hilo MetricsPublisher — collect_route_stats: agrupa por ruta/método y calcula per-
centiles (p50, p95, p99) y error rate.

3. _flush — INSERT enmonitor_api_metrics calculando RPS (sample_size / interval_seconds).

2.2 Configuracion

e Variables de entorno sugeridas: APT_METRICS_INTERVAL_SECONDS, API_METRICS_WINDOW_SECONDS,
APT _METRICS_RETRY_BACKOFF.

o Se recomienda fijar history_size de APIMetrics segin el trafico estimado (por defecto 50).

e Pruebas unitarias: tests/unit/test_api_metrics.py cubre APIMetrics, collect_route_stats
y los reintentos del publicador con un engine simulado.

3 Cache de respuestas

o Implementado en api/caching.py (TTL configurable con API_CACHE_TTL_SECONDS).
e Decorador @cached_response envuelve endpoints idempotentes.
o Limpiar cache: reiniciar el servicio (systemctl restart illanes00-ep).

4 Logs y auditoria

e etl_log almacena ejecuciones de pipelines y puede usarse para monitoreo a largo plazo.
o Los accesos a la API quedan en journalctl -u illanes00-ep y en la métrica en memoria.

5 Cobertura DIPRES (status page)

e El endpoint /api/0.6.9/status expone dipres_coverage con el inventario de archivos
descargados y la lista pending_downloads (meses/trimestres faltantes, datasets pendientes).
o Elscript PYTHONPATH=. python scripts/check_dipres_coverage.py imprime el mismo re-

sumen en consola.
e Integracion en la landing: seccién “Estado de datos” enlaza al JSON de status y muestra los

faltantes destacados (hasta 4 afios recientes + resumen de pendientes).

6 Proximos pasos sugeridos

1. Exportar métricas a Prometheus (adapter constante).
2. Persistir status_codes en Postgres cada X minutos.
3. Alertar si se detecta incremento de 5xx en la ventana configurable.

	Métricas en memoria
	Publicador en segundo plano
	Flujo resumido
	Configuración

	Cache de respuestas
	Logs y auditoría
	Cobertura DIPRES (status page)
	Próximos pasos sugeridos

