
Monitoreo de la API

Table of contents

1 Métricas en memoria 1

2 Publicador en segundo plano 2
2.1 Flujo resumido . 2
2.2 Configuración . 2

3 Cache de respuestas 2

4 Logs y auditoría 2

5 Cobertura DIPRES (status page) 3

6 Próximos pasos sugeridos 3

1 Métricas en memoria

El middleware metrics_middleware (ver api/main.py) registra:

• Conteo de códigos HTTP.
• Últimas 50 solicitudes (path, método, timestamp, bytes enviados).
• Metadatos del último payload (payload_meta).
• Versión semver + commit (meta.version, meta.git_commit) cuando se consulta /status.

Se expone vía GET /api/0.6.9/status.

{
"status_codes": {"200": 42, "404": 3},
"recent_requests": [
{"path": "/api/0.6.9/datasets", "status_code": 200, ...}

],
"last_payload": {"collection": "datasets", "resource": "dim_region", "returned": 25, "timestamp": 1696876800.0}

}

1

2 Publicador en segundo plano

• api.metrics.storage.APIMetrics mantiene la ventana de peticiones recientes y los conta-
dores agregados. El middleware registra cada request con metrics.record(...).

• api.metrics.publisher.MetricsPublisher toma esos snapshots y, cada interval_seconds,
invoca publish_once para persistir los percentiles, RPS y tasa de error en monitor_api_metrics.

• start_metrics_publisher(engine, interval_seconds=60, window_seconds=300,
max_retries=3, retry_backoff=1.0) inicializa un hilo daemon. Los tiempos de espera
entre reintentos siguen el patrón retry_backoff * intento.

• Ante errores de base de datos (SQLAlchemyError) se reintenta hasta max_retries veces y se
registra un warning; si se agotan los intentos, se continúa el ciclo sin interrumpir la API.

• El método publish_once puede usarse en tareas programadas (cron) para correr el mismo
flujo en ejecución síncrona.

2.1 Flujo resumido

1. Middleware → APIMetrics.record: acumula datos crudos.
2. Hilo MetricsPublisher → collect_route_stats: agrupa por ruta/método y calcula per-

centiles (p50, p95, p99) y error rate.
3. _flush → INSERT en monitor_api_metrics calculando RPS (sample_size / interval_seconds).

2.2 Configuración

• Variables de entorno sugeridas: API_METRICS_INTERVAL_SECONDS, API_METRICS_WINDOW_SECONDS,
API_METRICS_RETRY_BACKOFF.

• Se recomienda fijar history_size de APIMetrics según el tráfico estimado (por defecto 50).
• Pruebas unitarias: tests/unit/test_api_metrics.py cubre APIMetrics, collect_route_stats

y los reintentos del publicador con un engine simulado.

3 Cache de respuestas

• Implementado en api/caching.py (TTL configurable con API_CACHE_TTL_SECONDS).
• Decorador @cached_response envuelve endpoints idempotentes.
• Limpiar cache: reiniciar el servicio (systemctl restart illanes00-ep).

4 Logs y auditoría

• etl_log almacena ejecuciones de pipelines y puede usarse para monitoreo a largo plazo.
• Los accesos a la API quedan en journalctl -u illanes00-ep y en la métrica en memoria.

2

5 Cobertura DIPRES (status page)

• El endpoint /api/0.6.9/status expone dipres_coverage con el inventario de archivos
descargados y la lista pending_downloads (meses/trimestres faltantes, datasets pendientes).

• El script PYTHONPATH=. python scripts/check_dipres_coverage.py imprime el mismo re-
sumen en consola.

• Integración en la landing: sección “Estado de datos” enlaza al JSON de status y muestra los
faltantes destacados (hasta 4 años recientes + resumen de pendientes).

6 Próximos pasos sugeridos

1. Exportar métricas a Prometheus (adapter constante).
2. Persistir status_codes en Postgres cada X minutos.
3. Alertar si se detecta incremento de 5xx en la ventana configurable.

3

	Métricas en memoria
	Publicador en segundo plano
	Flujo resumido
	Configuración

	Cache de respuestas
	Logs y auditoría
	Cobertura DIPRES (status page)
	Próximos pasos sugeridos

