Monitoreo de la API
Métricas en memoria
El middleware metrics_middleware (ver api/main.py) registra:
· Conteo de códigos HTTP.
· Últimas 50 solicitudes (path, método, timestamp, bytes enviados).
· Metadatos del último payload (payload_meta).
· Versión semver + commit (meta.version, meta.git_commit) cuando se consulta /status.
Se expone vía GET /api/0.6.9/status.
{
 "status_codes": {"200": 42, "404": 3},
 "recent_requests": [
 {"path": "/api/0.6.9/datasets", "status_code": 200, ...}
],
 "last_payload": {"collection": "datasets", "resource": "dim_region", "returned": 25, "timestamp": 1696876800.0}
}
Publicador en segundo plano
· api.metrics.storage.APIMetrics mantiene la ventana de peticiones recientes y los contadores agregados. El middleware registra cada request con metrics.record(...).
· api.metrics.publisher.MetricsPublisher toma esos snapshots y, cada interval_seconds, invoca publish_once para persistir los percentiles, RPS y tasa de error en monitor_api_metrics.
· start_metrics_publisher(engine, interval_seconds=60, window_seconds=300, max_retries=3, retry_backoff=1.0) inicializa un hilo daemon. Los tiempos de espera entre reintentos siguen el patrón retry_backoff * intento.
· Ante errores de base de datos (SQLAlchemyError) se reintenta hasta max_retries veces y se registra un warning; si se agotan los intentos, se continúa el ciclo sin interrumpir la API.
· El método publish_once puede usarse en tareas programadas (cron) para correr el mismo flujo en ejecución síncrona.
Flujo resumido
1. Middleware → APIMetrics.record: acumula datos crudos.
1. Hilo MetricsPublisher → collect_route_stats: agrupa por ruta/método y calcula percentiles (p50, p95, p99) y error rate.
1. _flush → INSERT en monitor_api_metrics calculando RPS (sample_size / interval_seconds).
Configuración
· Variables de entorno sugeridas: API_METRICS_INTERVAL_SECONDS, API_METRICS_WINDOW_SECONDS, API_METRICS_RETRY_BACKOFF.
· Se recomienda fijar history_size de APIMetrics según el tráfico estimado (por defecto 50).
· Pruebas unitarias: tests/unit/test_api_metrics.py cubre APIMetrics, collect_route_stats y los reintentos del publicador con un engine simulado.
Cache de respuestas
· Implementado en api/caching.py (TTL configurable con API_CACHE_TTL_SECONDS).
· Decorador @cached_response envuelve endpoints idempotentes.
· Limpiar cache: reiniciar el servicio (systemctl restart illanes00-ep).
Logs y auditoría
· etl_log almacena ejecuciones de pipelines y puede usarse para monitoreo a largo plazo.
· Los accesos a la API quedan en journalctl -u illanes00-ep y en la métrica en memoria.
Cobertura DIPRES (status page)
· El endpoint /api/0.6.9/status expone dipres_coverage con el inventario de archivos descargados y la lista pending_downloads (meses/trimestres faltantes, datasets pendientes).
· El script PYTHONPATH=. python scripts/check_dipres_coverage.py imprime el mismo resumen en consola.
· Integración en la landing: sección “Estado de datos” enlaza al JSON de status y muestra los faltantes destacados (hasta 4 años recientes + resumen de pendientes).
Próximos pasos sugeridos
1. Exportar métricas a Prometheus (adapter constante).
1. Persistir status_codes en Postgres cada X minutos.
1. Alertar si se detecta incremento de 5xx en la ventana configurable.
